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[1] We describe a global atmospheric data assimilation scheme that has been adapted for
use with a Martian General Circulation Model (GCM), with the ultimate goal of creating
globally and temporally interpolated “reanalysis” data sets from planetary atmospheric
observations. The system uses the Data Assimilation Research Testbed (DART) software
to apply an Ensemble Kalman Filter (EnKF) to the MarsWRF GCM. Specific application
to Mars also required the development of a radiance forward model for near‐nadir
Thermal Emission Spectrometer (TES) observations. Preliminary results from an
assimilation of 40 sols of TES radiance data, taken around Ls = 150° (August 1999, Mars
Year 24), are provided. 1.3 million TES observations are ingested and used to improve the
state prediction by the GCM, with bias and error reductions obtained throughout the
state vector. Results from the assimilation suggest steepening of the latitudinal and vertical
thermal gradients with concurrent strengthening of the mid‐latitude zonal jets, and a
slower recession of the southern polar ice edge than predicted by the unaided GCM.
Limitations of the prescribed dust model are highlighted by the presence of an atmospheric
radiance bias. Preliminary results suggest the prescribed dust vertical profile might not be
suitable for all seasons, in accordance with more recent observations of the vertical
distribution of dust by the Mars Climate Sounder. The tools developed using this DA
system are available at http://www.marsclimatecenter.com. A tutorial and example TES
radiance assimilation are also provided.
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1. Introduction

[2] Data assimilation (DA) is the popular term in geo-
physical fluid dynamics for problems of combining the
information content in observations and models. In the
context of the Martian atmosphere, data assimilation is
the process of combining remote observations of the Martian
atmosphere with General Circulation Models (GCMs) to
produce a self‐consistent description of the state and evo-
lution of the Martian atmosphere. Over the past decade
observations by the NASA Mars Global Surveyor (MGS),
Mars Reconnaissance Orbiter (MRO), and ESA Mars
Express have provided a wealth of data with which to
constrain GCMs using data assimilation and multiple DA
systems are being developed to utilize this information in the

context of climate modeling and weather forecasting (e.g.,
this work, Hoffman et al. [2010b], andMoudden and Forbes
[2010]).
[3] In order to ingest observations into a GCM we require

a method that allows us to objectively compare model pre-
dictions with observations while accounting for the inherent
error in both processes. One such method is the Kalman
filter [Kalman, 1960; Kalman and Bucy, 1961], where the
model prediction and observation are combined in the context
of a Bayesian algorithm to determine the most likely state
given the available information.
[4] This paper describes the application of a variation

of the Kalman filter (the Ensemble Kalman filter) [e.g.,
Evensen, 1994, 2009; Kalnay, 2009] that can be applied to
problems with a large number of degrees of freedom, such
as those found in atmospheric sciences. Using a framework
developed for generalized data assimilation problems, the
Data Assimilation Research Testbed [Anderson et al., 2009],
we will assimilate the radiance observations made by the
Thermal Emission Spectrometer (TES) [Christensen et al.,
2001] aboard the MGS satellite. These radiance observa-
tions will be directly ingested within the DA system using
a forward model to simulate the observations using
the information on atmospheric temperature, pressure and

1Ashima Research, Pasadena, California, USA.
2Point Carbon, Washington, D. C., USA.
3Institute for Mathematics Applied to Geosciences, National Center for

Atmospheric Research, Boulder, Colorado, USA.
4Jet Propulsion Laboratory, California Institute of Technology,

Pasadena, California, USA.

Copyright 2011 by the American Geophysical Union.
0148‐0227/11/2011JE003815

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 116, E11011, doi:10.1029/2011JE003815, 2011

E11011 1 of 17

http://dx.doi.org/10.1029/2011JE003815


opacity contained in the Martian GCM (MarsWRF)
[Richardson et al., 2007]. While the assimilation of cali-
brated radiance data is novel in Martian data assimilation,
the benefits obtained from assimilating temperature retrie-
vals in the study of the Martian atmosphere have been
shown in previous work [e.g., Banfield et al., 1995; Houben,
1999; Lewis and Read, 1995]. In terrestrial data assimila-
tion, the direct assimilation of calibrated radiances [Eyre
et al., 1993; Andersson et al., 1994] has produced notice-
able improvements over the assimilation of temperatures
retrieved from those same radiances.
[5] Early approaches to Martian data assimilation made a

number of simplifying approximations that allowed rapid
development of the DA systems while providing significant
improvements to the simulations. Many of these approx-
imations had also been made in terrestrial data assimilation,
and were intended to reduce the complexity of problem to a
manageable level considering the computational resources
available. For example, Houben [1999] used a truncated
state space Mars atmosphere model (effectively a reduced
resolution and complexity GCM) with a 4D variational data
assimilation method, where a model adjoint is used to
determine the corrections that are applied to the model state
in order to match the available observations. Extensive
validated results have yet to be published from this study.
[6] Another simplifying approximation, made by Banfield

et al. [1995], was to assume that the relationship between
model variables would remain constant in time. This assump-
tion implies a constant (in time) covariance between ele-
ments in the model state vector that allows a steady‐state
Kalman filter to be used [e.g., Kalnay, 2002]. In this
approach, the results from an ensemble of GCM instantia-
tions are used to derive the covariance matrix that is then
used to correct the unobserved variables in the model state
(e.g. winds) after deriving suitable corrections to the observed
variables (e.g. temperature). Banfield et al. [1995] reported
some success with this method, but suggested that assimila-
tion of aerosols would be necessary for further improve-
ment of their results.
[7] Lewis et al. [2007] use a once‐operational terrestrial

assimilation scheme, the Analysis Correction Scheme [Lorenc
et al., 1991], where observations are used to construct a
corrective forcing that is then applied to the model prognostic
variables within the GCM. This approach is successful in the
sense that it generates a time sequence of analyzed model
states and has been validated using independent data sets
with reasonable success [Montabone et al., 2006]. However,
the ad‐hoc nature of the applied forcing makes longer‐term
corrections of the model state difficult.
[8] A more advanced, time dependent, Local Ensemble

Transform Kalman Filter (LETKF) has been implemented
by Hoffman et al. [2010b] in order to assimilate atmospheric
temperatures derived from radiance observations from TES.
In this approach, an ensemble of GCM instantiations are
maintained to derive the time‐dependent covariance matrix
used to determine the corrections to the GCM state. This
method has been used to run Observing System Simulation
Experiments (OSSE) where one instantiation of the GCM is
used as truth and the remainder of the ensemble attempts to
simulate this truth. Assimilations with real TES retrieved
temperatures are ongoing and Hoffman et al. [2010a] have
found that applying a bias correction to the model state

reduces the biases in their assimilation and allows for better
comparison with the available observations.
[9] The work we describe here is an ongoing effort to

develop an ensemble Data Assimilation (DA) system for the
Martian atmosphere that is flexible with regard to the
components used. We have developed our DA system using
the Data Assimilation Research Testbed (DART) [Anderson
et al., 2009], a rigorous and expandable framework that
allows various observation types and models to be combined
using a common interface to an Ensemble Kalman Filter or
Smoother. To perform data assimilation with DART, we
use the MarsWRF GCM [Richardson et al., 2007], a global
version of the Weather, Research and Forecast model
developed at NCAR for terrestrial mesoscale simulation
(WRF) [Skamarock and Klemp, 2008].
[10] We use the DA system to ingest near Infra‐Red (IR)

radiance observations taken by the TES instrument aboard
the MGS satellite. We use a forward model to simulate
radiance observations of the Martian atmosphere that can be
compared directly with the calibrated radiances stored in the
TES database [Christensen et al., 2001]. The use of a
radiances in our assimilation, rather than retrieved temper-
ature data [e.g., Hoffman et al., 2010b] significantly reduces
the amount of numerical processing we perform on each
observation before assimilation. This allows us to retain
more of the information available in each observation. For
example, each radiance observation contains information on
the thermal structure, aerosol distribution, and surface
properties. Using information from the GCM, we can sim-
ulate this radiance observation in a consistent manner, rather
than using the dust distribution or surface properties assumed
by the retrieval team.
[11] The remainder of this manuscript describes the

components used in the DA system, and presents prelimi-
nary results from a short assimilation of TES radiances. In
section 2 we describe each component of the DA system,
beginning with the GCM, MarsWRF, followed by the TES
radiance forward model, and the DART model interface, and
finally the observation pre‐processing required. In section 3
we show the results from a 40 sol TES radiance assimila-
tion near Ls = 150°. In section 4 we perform three additional
experiments using the same TES data after excluding dust
and/or surface properties from the state vector to gauge their
effect on the assimilation. Finally, in section 5 we provide a
summary of our results and our conclusions.

2. Data Assimilation System

[12] The data assimilation approach we use is based on
an Ensemble Kalman filter (EnKF), where we evolve an
ensemble of N slightly differing model states that each
attempt to simulate the Martian atmosphere. Each ensemble
member has an associated state vector that holds the variables
being modified by the DA. The state vector for MarsWRF
contains surface and atmospheric temperature, surface and
atmospheric pressure, surface albedo and emissivity, surface
CO2 ice, column dust opacity, and the horizontal wind
vector. Additional assimilations omitting surface albedo or
emissivity from the state vector have also been performed
and will be discussed later.
[13] This ensemble is used to provide a prediction of the

atmospheric state (represented by the ensemble mean) and to
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provide necessary information on the variability of the atmo-
sphere and covariance of the state vector (through the ensemble
variance) [Evensen, 1994; Evensen and VanLeeuwen, 1996;
Anderson, 2001]. This information is used, along with
observations, within the Kalman filter to adjust the state of
each ensemble member to more accurately simulate the
atmosphere at the time of the observation, and to represent
the uncertainty of the atmospheric state using the ensemble
variance.
[14] We perform an iterated cycle of forecast integration

and assimilation. The integration step is performed by the
MarsWRF GCM under the control of the DART software,
which maintains the ensemble of model states and provides
the initial conditions necessary to continue the simulation.
The assimilation step is performed by the DART software.
In the assimilation step we compare observations with for-
ward model simulated radiances to derive a correction to
the ensemble in observation space (the innovation), that is
consequently applied to the ensemble states using the derived
covariance matrix. In this section we will describe each
component as they relate to the DA system. More detailed
descriptions of each component, including validation and
experimental results, can be found in the referenced literature.

2.1. The Mars Weather Research and Forecast Model

[15] We use version 3.0.1.1 of the MarsWRF climate
model [Richardson et al., 2007]. We prescribe the radiative
forcing in the GCM using a two stream, single scattering,
radiative flux solver based on the Hadley Centre Unified
Model algorithm [Edwards and Slingo, 1996], modified by
Mischna et al. [2006] for use in MarsWRF. This parame-
terization calculates fluxes in the visible and infra‐red spectra
using a correlated‐k method to specify the optical properties
of the carbon dioxide atmosphere, and Mie scattering
derived parameters to describe the radiative effects of the
atmospheric dust and water.
[16] MarsWRF simulates well the climatological mean

state of the Martian atmosphere, including the seasonal CO2

cycle [Guo et al., 2009] and the spatial and temporal
structure of the dominant atmospheric thermal tides [Lee
et al., 2009]. Investigation of the water ice cycle [Inada
et al., 2005; Mischna et al., 2005], active dust cycle
[Newman et al., 2006], and paleo‐climate [Mischna et al.,
2005; Soto and Richardson, 2009; A. Soto et al., Global
constraints on precipitation and aridity on ancient Mars,
submitted to Journal of Geophysical Research, 2011] are
ongoing with the global version of MarsWRF.
[17] The surface visible albedo, surface IR emissivity, and

column dust opacity parameterizations have been modified
from the nominal MarsWRF GCM [Richardson et al., 2007]
to facilitate the data assimilation process. In the nominal
MarsWRF GCM the surface visible albedo and surface IR
emissivity are prescribed fields (based on results from TES
observations [Christensen et al., 2001; Bandfield, 2002]),
with modification due only to deposition of CO2 ice on the
surface whose albedo and emissivity are also prescribed
[Guo et al., 2009]. Within the DA system, we allow both the
albedo and emissivity to be modified by the DA system
independently of any changes to the CO2 ice, dust loading,
or other surface properties. This allows the DA system to
simulate mixed surface types by smoothly varying surface
properties between the prescribed extrema (e.g. dust covered

ice or partial ice covered grid boxes) that are not simulated
in the nominal GCM.
[18] The column dust opacity is modified in a similar way.

The nominal dust parameterization is based on the ‘MGS’
scenario used in the Mars Climate Database [Lewis et al.,
1999], which uses a vertically prescribed relative dust pro-
file and additionally prescribes the spatial and temporal
variability of the column dust opacity. Within the DA sys-
tem, we update the column dust opacity to agree with the
nominal model by injecting or removing dust, but we also
allow the DA system to modify the column dust opacity as
necessary. We do not allow the DA system to modify the
vertical profile of the dust column from the modified
Conrath [1975] profile. Recent work reported by Heavens
et al. [2011a, 2011b] suggests that the dust distribution in the
Martian atmosphere is not well represented by a Conrath‐like
profile at all seasons. Ongoing work with MarsWRF
includes the implementation of an advected dust scheme
within the DA system that should improve the representa-
tion of dust in our model.
[19] The observations we use from TES are linked to

observation times based on the J2000 ephemeris system. To
ingest these observations accurately in time and space we
use the Mars24 timing scheme [Allison and McEwan, 2000]
within MarsWRF. The Mars24 system allows us to calculate
the true local solar time and heliocentric longitude (Ls)
given the information available in the TES database, which
in turn allows us to place the TES observations correctly
within the simulated atmosphere (e.g. accounting for vari-
able sol length). This modification corrects two possible
errors; First, the mean solar time (i.e. assuming a fixed
solar day length) deviates from the true solar time by up to
90 minutes over a year; Second, each year Ls = 0° corre-
sponds to a different local time at the prime meridian (due to
the non‐integer number of sols in each year).

2.2. Observation Forward Model

[20] At each assimilation step we use an observation for-
ward model within the DA system to simulate the observa-
tions using the state vectors of the ensemble members. In the
radiance assimilation we perform, the observations simulated
are the calibrated radiances observed using TES [Christensen
et al., 2001] aboard the Mars Global Surveyor (MGS), and
the observation forward model used to simulate the obser-
vation is a two‐stream single‐scattering radiative transfer
model.
[21] TES is a nadir sounding grating spectrometer, observ-

ing from 200 to 1700 cm−1 with a resolution of 5.29 cm−1 or
10.58 cm−1 depending on the scan mode. These data can be
obtained from the NASA Planetary Data System archive
(PDS, http://pds.jpl.nasa.gov). We consider 24 high resolu-
tion radiance bands between 572 cm−1 and 815 cm−1 within
the DA system, capturing radiance from the surface and
atmosphere up‐to approximately 35 km altitude. In our cur-
rent verification and validation tests of the DA system, and in
the plots shown here, we use radiance data from detector 2
with no detector mask applied.
[22] To ingest the calibrated radiance data from TES we

use a custom radiance forward model developed using a
two–stream flux solver [Edwards and Slingo, 1996] based
on the radiation parameterization used within MarsWRF
to simulate the infra‐red and solar fluxes in the GCM
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[Johnson et al., 2008]. The forward model calculates
Top‐Of‐Atmosphere (TOA) fluxes from the atmosphere at
a resolution of 5.29 cm−1 using pre‐calculated correlated‐k
tables [Lacis and Oinas, 1989] and the prescribed dust
parameters used within the model [Wolff and Clancy, 2003],
ensuring consistency between the two radiation models. The
calculated TOA fluxes are convolved with a truncated sinc
function to represent the Instrument Line Shape to fully
simulate an observation by TES. The Full Width at Half‐
Maximum (FWHM) of the sinc function is set to the reso-
lution for TES, 6.72 cm−1 for the high resolution scans used
here. We truncate this calculation at (the spectral bin con-
taining) 1 FWHM, giving 3 points of calculation at high
resolution and 5 points at low resolution.

2.3. DART Assimilation and Innovation

[23] Once the observations have been simulated at a single
assimilation time (i.e. the prior has been calculated) the
ensemble of model states, including the simulated obser-
vations, is used to calculate the terms of the covariance
matrix that will be used to apply corrections to all of the
fields based on corrections to the simulated observations.
If necessary, variance inflation [Anderson and Anderson,
1999; Anderson, 2009] can be applied to the observation
predictions to increase the simulated spread in the predic-
tions, and covariance localization [Houtekamer and Mitchell,
2006] can be applied during the regression step used to
transform the innovations back into state space. Using this
data, the innovations to the simulated observations are cal-
culated using a Bayesian algorithm, and the covariance
matrix is used to propagate these corrections to the entire
state vector. After the innovation has been applied, DART
repeats the forward model calculation for every simulated
observation, producing the posterior.
[24] The cycle of forecast integration and assimilation is

repeated until the end of the assimilation, as determined by
the availability of observations or constraints placed on the
assimilation by the user.

2.4. Assimilation Setup and Procedure

[25] To perform an assimilation we begin with an
instantiation of the MarsWRF model forced only with the
internally described physical parameterizations and begin-
ning from a rest state. This model is integrated as described
by Richardson et al. [2007] for at least 1 Martian year to
produce a statistically steady‐state atmosphere. The inte-
gration of this model state ends 50 sols before the intended
start of the assimilation.
[26] To create the ensemble of model states, the steady‐

state atmosphere is perturbed using additive Gaussian white
noise perturbations on the temperature, surface pressure,
horizontal wind, emissivity, albedo, and column dust opacity.
Each ensemble member is then integrated for the remaining
50 sols to allow them to reach a new steady state. The
magnitudes of the perturbations are small (e.g. standard
deviations of 2 K in temperature, 5 m/s in horizontal wind,
0.02 in albedo and emissivity) and are constrained to keep
albedo and emissivity between zero and one.

2.5. TES Observation Processing

[27] We minimally process the TES data to produce the
input data set for use in the data assimilation. The proces-

sing includes calculating time and location data to place the
observation correctly within the GCM, and gridding the data
to improve the representativeness by producing a data
set that is more comparable with the output of the GCM.
Essentially, we are applying the smoothing function of the
GCM (a spatial smoothing) to the TES data, just as we apply
a spectral smoothing function (the Instrument Line Shape)
to the GCM simulated radiances. This is analogous to the
procedure used when comparing the retrieved data from two
satellite observations [Rodgers and Connor, 2003], where
the averaging kernel from each instrument is applied to the
retrieved profiles from the other instrument, allowing more
realistic comparison.
[28] The TES data is first processed using the vanilla tool

to extract ephemeris data, location data, and radiance infor-
mation. The ephemeris time is converted to a Mars Solar Day
(the ‘calendar’ sol) and Mars Coordinated Time (the time at
the Prime Meridian) for the observation, and the location
data is used to place the observation on the surface of Mars.
We group observations into co‐located sets based on the
model grid and on the ephemeris time of the observation,
with each set containing all observations within each model
grid box that are contiguous in time. Each observation set
contains about 20 multi‐band observations. Using these
collated observations, we calculate a mean and variance of
the set. The mean is used as the observed radiance, and the
maximum of the variance and the instrument error [Smith
et al., 2001] is used as the observation error.
[29] Within the DA scheme, we assimilate new observa-

tions each hour there are suitable data— gaps in observations
are integrated by the GCM, but no assimilation step occurs.
We ingest all observations that occur within 30 minutes of
the assimilation time at the assimilation time, after com-
paring with the acceptance criteria based on GCM and
observation errors. Each observation is used in one assimi-
lation step only and simulated once by the forward model
for each ensemble member (for the Prior, and again for the
Posterior). We do not attempt to better ‘fit’ the observation
before the assimilation step. The only constraints placed
upon the forwardmodel input are those imposed by the GCM.
[30] For each TES observation we include information

from the TES database (or derive from available data) the
scan resolution, satellite zenith angle, heliocentric longitude,
aerocentric longitude and latitude, Mars Solar Day (MSD),
and Mars Coordinated Time. We use the wave number of
the band center to represent the wave number of the
observation, and we do not account for the very small dif-
ferences in central wave number that occur in each of the six
detectors. This data is sufficient, in concert with the GCM
state vector, to allow the forward model to reproduce the
observation.
[31] The data assimilation setup we have chosen is suffi-

ciently flexible that ingesting alternate data requires only a
suitable observation operator for that data. While we have
tested TES retrieved temperature assimilation with DART,
we have not included those results here because the pre-
liminary assimilation lacked a suitable smoothing observa-
tion operator that would reduce the effective resolution of
the GCM to the resolution of TES. This observation oper-
ator would perform a similar action to the smoothing
applied by Lewis et al. [2007] to their GCM within the
analysis correction scheme. Combined with a suitable dust
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assimilation scheme this observation operator would allow
us to assimilate the TES retrieved parameters without using
calibrated radiances used here.

3. Results

[32] In this section we give an example of the DA system
in operation. Wewill use a 20 member ensemble to assimilate
40 sols of TES radiance observations. These observations
were taken between June and August 1999 (Mars Year 24,
approximately Ls = 150° to Ls = 170°). We use 24 radi-
ance bands from each of the 1.3 million TES spectra (from
572 to 815 cm−1), and use this to define 30 million inde-
pendent radiance observations. Using the method outlined in
section 2.5, we collate this data to approximately 1.6 million
gridded observations for use in the DA system. In the
experiment shown here, we do not increase the spread of
observations using observation inflation [Anderson and
Anderson, 1999; Anderson, 2009]. Localization is applied
using a Gaspari and Cohn [1999] function with a half‐width
of 10 degrees (about ∼600 km). For every observation we
ingest, DART calculates the prior and posterior in radiance
observations, and the ensemble variances associated with
each. From this data we can calculate a number of useful
diagnostic fields, presented in Figures 1–5.
[33] Figure 1 shows four diagnostic fields for a single

radiance band. For each observation we ingest, DART
compares the observation with the prior ensemble and
determines whether the observation should be ingested based

on its difference from the prior ensemble mean. If the distance
is smaller than a predefined threshold (3 times the square root
of the sum of the prior and observational error variances) that
observation is accepted, and this is shown in Figure 1 as the
fraction of observations that are accepted and therefore used
in the assimilation. If the GCM simulation is skillful we
would expect a high fraction of observations to be accepted
and the assimilation would improve the simulated atmo-
sphere. Conversely, if a large fraction of the observations are
rejected (due to low skill) there is a risk that the simulated
atmosphere will deviate from reality. Figure 1 shows that we
accept about 80% of the observations in this (surface) band,
and in general we accept 75% of the observations. While
this number is lower than we would like, it represents a large
fraction of the available observations. Many of the rejec-
tions are due to biases in the model that are reduced by the
assimilation and can be further reduced with improved
physical parameterizations.
[34] Using all of the available observations, whether

ingested or not, we can also measure the biases and errors in
the ensemble. For example, in Figure 1 we calculate the bias
and RMS error between the priors and the observations. We
also show the spread of the ensemble members around the
ensemble mean (in observation space, at the observation
location). In this example, the RMS errors remain around
10−7 W/m2/str/cm−1, which corresponds to the minimum
prescribed observational error, and the magnitude of the biases
are reduced by the assimilation. However, the ensemble
spread is small compared to the observation error in this

Figure 1. Results from the 40‐sol assimilation of TES radiances, shown for the surface band at 572 cm−1.
Each plot shows the hourly binned data as grey dots, and the quartic fit through the data as a black line. The
quartic fit is the least squares best quartic fit but not necessarily the least squares polynomial fit or best model
for the data being fit. (top left) fraction of the available observations that were ingested during each assim-
ilation period. (top right) Bias (Prior‐Observation). (bottom left) RMS Error. (bottom right) Total Spread
(standard deviation) of the 20‐member ensemble and the observational error.
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band. That the Martian atmosphere has little variability is a
known problem [Newman et al., 2004] and there is some
risk here that the ensemble could deviate significantly from
reality and begin rejecting all observations, preventing any
corrections to the state by the assimilation. In this example,
the ensemble prediction is within the predefined error limits

of 3 sigma for most of the observations and the climatology
is a reasonably good estimate of the true atmosphere. As
a result the ensemble does not deviate far from the true
atmospheric state.
[35] Figure 1 shows the results from the 572 cm−1 band,

dominated by radiance from the surface. Figure 2 shows the

Figure 2. As Figure 1 but for the atmosphere band at 667 cm−1.

Figure 3. Biases for all bands separated into morning (AM) and afternoon (PM) observation times.
The initial biases are Prior ‐ Observation for the first sol of the assimilation. The final biases are
Prior ‐ Observation for the last sol of the assimilation. Bands below 620 cm−1 and above 720 cm−1 are
dominated by radiance from the surface, while bands between 620 cm−1 and 720 cm−1 are dominated
by radiance from the atmosphere.
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same data from a radiance channel dominated by atmo-
spheric temperature (667 cm−1). The GCM typically per-
forms better in simulating the surface radiance than the
atmosphere dominated radiance, in part because the ensemble
spread for the surface is larger than the atmosphere (relaxing
the rejection criteria) but also because the surface dominated
radiance is less sensitive to (parameterized) vertical profiles
of aerosols than the atmosphere dominated radiances.
[36] In both the surface (Figure 1) and the atmosphere

(Figure 2) bands the magnitude of the biases are reduced
over the 40 sols, but with little change in the errors. In this
example the RMS errors (bottom left) tend to be of the same
magnitude as the Total Spread (total right), which suggests
the ensemble is performing well during this season. Unrea-
sonably large errors (i.e. much larger than the total spread)
would imply a model error while unreasonably small errors
(much smaller than the total spread)might suggest a GCM
with insufficient physical constraints such that it can repro-
duce any observation including observational errors.

Figure 4. Total spread of the observation and ensemble
states for all bands separated into morning (AM) and after-
noon (PM) observation times.

Figure 5. Longitudinal and time mean radiance (top) and observation‐prior bias (bottom) for the morn-
ing (left) and afternoon (right) observation windows. Each figure shows the radiance and bias as a func-
tion of latitude (horizontal axis) and wave number (vertical axis). Only half of the ingested wave number
range is shown and the wave number range shown is an approximate proxy for altitude, below 620 cm−1

corresponding to the surface, 680 cm−1 corresponding to a layer near 30 km altitude. In general, the morn-
ing observations are dominated by the warmer atmosphere, while afternoon observations are dominated
by the warmer surface. The first sol of the assimilation is shown in this plot. All plots show radiance in
mW/m2/str/cm−1.
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[37] The trend in the acceptance percentage (top left in
both figures) is best described by the trend in the bias field
in Figure 2 (top right). The biases (and RMSE) are reduced
in the first 10 sols of the assimilation, which a concurrent
increase in the acceptance of observations. However, the
corrections applied to the GCM eventually causes the biases
to increase (for the surface) or overshoot (for the atmosphere)
and result in an increase in the RMSE and concurrent
decrease in acceptance rates. This oscillation should decrease
in magnitude as the assimilation progresses.
[38] Figures 3 and 4 show the bias and RMS error,

respectively, for all 24 bands, for the initial (0–1 sol) and
final (39–40 sols) prior predictions. In general, the initial
ensemble predicts a surface that is too bright (possibly too
warm, too high emissivity or too low albedo, or too low
column dust opacity) while the atmosphere tends to be
slightly too dark (possibly too cold, or too much dust opac-
ity). By the end of the assimilation, much of the bias in the
surface field has been removed and the magnitude of the
atmosphere biases have been reduced. However, in the pro-
cess of correcting the biases in the surface the DA system has
changed the sign of the bias in the atmosphere, and even
increased the bias slightly in the lower atmosphere (e.g. at
640 cm−1 and 700 cm−1). This is clearer in Figure 4, showing
the RMS errors, where the lower atmosphere errors have
increased while most other errors have decreased.

[39] One reason for the increase in RMS error in the lower
atmosphere and sign change in the atmospheric bias is that
the lower atmosphere is coupled to the surface and upper
atmosphere by the fixed dust vertical profile. The assimi-
lation is unable to alter the nature of this coupling by
altering the vertical profile and the result is that while the
assimilation improves the surface dominated radiances, the
physical constraints within the GCM propagate these
changes unnecessarily into the atmosphere.
[40] Using the same data set, Figures 5 and 6 separate the

biases into the latitude bins used within the GCM (5 degrees
wide from 90°S to 90°N), local time, and wave number bins
as in Figures 3 and 4. Figure 5 shows the biases for the first
sol, while Figure 6 shows the last sol, and we show only the
lower half of the wave number range, from 572 cm−1 to
680 cm−1, as a proxy for altitude. Radiance from below
620 cm−1 is essentially surface dominated radiance, while
radiance from 667 cm−1 is dominated by the atmosphere at
about 35 km.
[41] There are three large structural biases present in these

figures. The first is the ice edge (at 45°S) where biases that
are present at the start of the assimilation disappear by the
end of the assimilation. The second bias is in the diurnal
structure, where the GCM tends to under‐predict the diurnal
cycle at the surface and in the lower atmosphere. The third
bias, in the vertical thermal lapse rate, is not clearly visible

Figure 6. As Figure 5, but for the last sol of the assimilation.
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in the observation (radiance) space, but can be seen in the
temperature profile and will be discussed later.
[42] During the season we used in the assimilation, Ls = 150°

to Ls = 170°, the transient CO2 ice over the southern polar
region is sublimating as southern spring begins and the sub‐
solar latitude moves southward. In this simulation the GCM
predicts an ice edge at 50°S, with soil to the north of this edge
(with low albedo and high emissivity) and ice to the south
(high albedo, low emissivity). However, the TES data sug-
gest that the ice edge might be a few degrees north of the
predicted ice edge, and this appears as a bright bias at the
start of the assimilation. The ensemble predicts a warm
surface, high emissivity, and low column dust opacity, all
of which lead to a higher radiance from the surface. At the
end of the assimilation, shown in Figure 6, the bias in the
southern ice edge has reduced substantially, and in fact
may be over‐corrected which results in a small dark bias at
the end of the assimilation.
[43] Near the end of the 40 sol assimilation, a bright bias

appears in the northern hemisphere suggesting that the
ensemble is missing the formation of the ice edge, or
under‐predicting the dust loading over the northern polar
terminator. It is unlikely that ice forms in the northern mid‐
latitudes during this season though there may be a increase in
column dust opacity at this time that is not simulated by the
GCM.
[44] A different bias dominates the radiance from the ice‐

free surface (northward of 45°S). By separating the obser-
vations into day‐time (2:00 PM to 4:00 PM) and night‐time
(2:00 AM to 4:00 AM) periods the biases that have a diurnal
dependence can be seen (particularly near the equatorial
surface). Neither albedo nor emissivity are expected to
change significantly with the diurnal tide, leaving only
column dust opacity or surface temperature as the cause of
the bias. Thus, the ensemble either incorrectly predicts the
amplitude of the surface temperature or atmospheric tem-
perature response to solar tidal forcing, or the ensemble
incorrectly parameterizes the response of column dust load-
ing to solar tidal forcing. Although the assimilation attempts
to remove dust, which would result in a larger diurnal thermal
cycle that might remove this bias, the bias persists
throughout the assimilation. This bias might be correctable
by the assimilation given a better vertical dust profile, but
the lack of change over the assimilation run suggests that a
radiative component of the tropical atmosphere is missing.
One possible component are the water ice clouds identified
by Wilson et al. [2008] in the reanalysis data set produced
by Lewis et al. [2007].
[45] We can also show the corrections to the ensemble

state by comparing the thermal structure with the retrieved
TES temperatures [Smith et al., 2001]. These retrieved
temperature profiles are given on constant pressure levels
and are smoothed in altitude by the observation geometry
and retrieval process. For this comparison we sampled
the ensemble mean state at the time and location of each
observation we assimilated. We then smoothed the sampled
temperature profile output using the effective vertical reso-
lution of TES given by Eluskiewicz et al. [2008] to produce
a data set of simulated TES retrievals. This smoothing
removes the variability in the vertical profile that TES
cannot resolve, such as the inversion layer in the lower

atmosphere, and produces smoother temperature profiles
similar to those output by the retrieval process.
[46] We process the results from the nominal (i.e. not

assimilated) and assimilation models in this way to create
three similar data sets; The original TES data set, a simu-
lated data set based on the nominal GCM ensemble, and a
simulated data set based on the assimilation ensemble.
These data sets are then gridded into 5 degree latitude bins
and 1 sol time bins on the vertical levels used by the TES
data set. Figures 7 and 8 show (from top to bottom) the
TES retrieved temperatures, the mean difference between
TES and the nominal GCM ensemble, and finally the dif-
ference between TES and the Prior ensemble mean from the
assimilation. Both figures separate the morning (2:00 am–
4:00 am) and afternoon (2:00 pm–4:00 pm) results, shown
in the left and right columns, respectively.
[47] In the initial sol (Figure 7) both the nominal ensemble

and assimilation ensemble predict a similar thermal struc-
ture, with small variations because of the effect of the
assimilation during the first sol. Over most of the atmo-
sphere there is a small bias in the vertical lapse rates, which
dominate the afternoon biases. The GCM predicts a warmer
boundary layer/lower atmosphere and colder middle atmo-
sphere than suggested by TES observations, suggesting that
the real atmosphere is more stable than the model prediction.
Another bias occurs in the southern hemisphere near the ice
edge and over the polar cap, where the GCM overpredicts
the temperature and underpredicts the ice extent (as sug-
gested earlier by the growth in the ice edge in the assimi-
lation compared to nominal ensemble).
[48] At the end of the simulation (the last sol, Figure 8)

the nominal GCM ensemble continues to overpredict the
temperature in the northern mid‐latitudes and the southern
polar cap temperature but with smaller biases than the
nominal ensemble. The assimilation is less successful in
correcting the middle atmosphere than the near‐surface
atmosphere, because of the low variability in the ensemble
and because of the constraints imposed by the fixed dust
profile, which prevents the assimilation from changing the
thermal lapse rate significantly.
[49] Many of the modifications to the state vector occur in

the surface fields. Figure 9 shows the differences of surface
fields and total column dust opacity between the ensemble
and the nominal MarsWRF GCM (positive means a higher
value in the assimilation ensemble in each case). For the
surface fields we show the surface temperature, surface IR
emissivity, and surface visible albedo. For the column dust
opacity we show 7 mb dust opacity used within the GCM
to define the column dust loading. In Figure 10, we show
the prior minus observation radiance differences as before,
gridded by latitude, local‐time, and sol, for the surface band
centered at 572 cm−1.
[50] These figures, combined with Figures 5 and 6 show

the evolution of the surface fields in response to the cor-
rections derived from observations by the DA system. The
ensemble initially predicts an ice edge near 50°S (shown in
the emissivity and albedo fields) and as a result the surface
brightness between 50°S and 45°S is overpredicted (Figure 5).
Using the radiance observations, the DA system reduces this
bias by increasing the ice‐edge surface albedo (almost to the
albedo of the ice‐covered surface), increasing ice‐covered
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emissivity, and increasing the column dust opacity along the
ice‐edge. As a result the surface temperature in this region
drops about 15 K but remains above the CO2 ice conden-
sation temperature.
[51] The surface temperature predicted by the DA system

is not unphysical, but it cannot be easily simulated in the
nominal GCM where the surface parameterization of ice,

albedo, and emissivity, are described using a binary model.
The DA system produces a mixed state where, for example,
the albedo is between that of the ice‐free state and ice‐
covered state and the surface temperature is colder than the
fully ice‐free state predicted in the nominal model, but
warmer than the fully ice‐covered state. This result suggests
that the surface parameterization could be refined to include

Figure 7. Longitudinal and time mean TES retrieved atmospheric temperature (top), nominal GCM‐
TES bias (middle), and assimilated GCM‐TES bias (bottom), for the morning (left) and afternoon (right)
observation windows. Each figure shows the temperature or bias as a function of latitude (horizontal axis)
and pressure (vertical axis) between 1 kPa and 10 Pa. The first sol of the assimilation are shown in this
plot. All plots show temperature in K.
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fractional ice coverage, or multiple surface types within each
grid box, which would help the forward model simulate the
(grid‐box average) observation more accurately. This type
of sub‐gridscale surface model is common in Earth GCMs
[Stensrud, 2007] but rare in Martian GCMs.
[52] In the ice‐free atmosphere, the observations suggest

less dust in the summer tropics than in the nominal
MarsWRF, and more dust near the northern polar termina-
tor. The structure of the dust injection by the data assimi-
lation suggests that the parameterized fixed dust field in
MarsWRF tends to miss the dust lifting that occurs at the

ice‐edge and to a lesser extent at the polar terminator, and
over‐predicts the amount of long term dust in the atmo-
sphere during this period (for this year). Recent work by
Cantor [2007] and Kahre et al. [2010] suggests that much
of the dust lifting should occur at the ice edge throughout
the year, which is not captured by the current dust parame-
terization. A recent upgrade to the MarsWRF GCM includes
an active, advected, three dimensional dust parameterization
that will be used in future assimilations. This new
dust parameterization is able to predict dust lifting on the
surface, and should produce simulations more consistent

Figure 8. As Figure 7, but for the last sol of the assimilation.
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Figure 9. Longitudinally averaged difference between the assimilated model output and a nominal (not
assimilated) model for the same time period. Top row, left‐to‐right: Surface temperature (K), Emissivity (%).
Bottom row, left‐to‐right: Albedo (%), column dust opacity (0.01 opacity units).

Figure 10. (left) Prior‐Observation AM difference for a surface band in the assimilated model (mW/m2/
str/cm−1), (right) Prior‐Observation PM difference for a surface band (mW/m2/str/cm−1).
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with the short term variability of dust loading in the
observations.

4. Assimilation With Different State Vectors

[53] We conducted three further assimilation with the
same input data set. The first assimilation, also discussed
above, included dust, surface emissivity and surface albedo
in the state vector (a: red in Figures 11 through 13). The
second assimilation (s: green in the figures) excluded dust

opacity (from the state vector, but not the GCM nor forward
model) and kept the surface parameters, the third assimila-
tion (d: blue in the figures) kept dust in the state vector but
excluded emissivity and albedo, and the fourth assimilation
(f) excluded dust, surface emissivity and surface albedo,
keeping only the atmosphere components and the surface
temperature and pressure. The latter three assimilations
assume that our GCM uses the correct model for either dust
opacity (s), surface properties (d), or both (f). Each assim-
ilation used the same TES data set, but different initial
ensembles to reflect the different state vector components
(i.e. we do not perturb the dust opacity for the assimilation
with no dust in the state vector).
[54] In general, the three new assimilations perform worse

than the original assimilation. By far the worst assimilation
is that with no dust or surface emissivity/albedo (f), which
has very little effect on the lower atmospheric state. The
percentage of observations we accept drops from 80%(a) to
60%(f) in the surface bands, and 75%(a) to 60%(f) in
the atmosphere. The intermediate assimilations, (s) and (d),
have intermediate acceptance percentages, varying in per-
formance with spectral band. The assimilation with dust in
the state vector(d) performs better in the lower and middle
atmosphere, where dust is important, and the assimilation
with surface parameters in the state vector(s) performs better
at, and near, the surface.
[55] In the assimilation without both surface parameters

and dust (f), the biases and errors are largest, with a larger
overshoot in bias in the atmosphere bands (e.g. compared to
sol 30 for assimilation (a) as shown in the top‐right plot of
Figure 1). In the (f) assimilation the biases and errors in the
surface‐dominated radiance fields are left largely uncor-
rected, errors in the lower atmosphere are actually worse,
and errors in the upper atmosphere are comparable to the a
assimilation. Figure 11 shows the final RMS errors as in
Figure 4 for each of the assimilations, for the last sol, sep-
arated into morning (top) and afternoon (bottom) time per-
iods. The morning results suggest one thing rather strongly,
almost all of the error reduction comes from including the
surface parameters in the state vector. The afternoon results
are more nuanced, suggesting that the assimilations perform
equally well in the middle atmosphere (radiances near
667 cm−1), while the assimilation without surface properties
(d and f) performs worse than the assimilations with surface
properties (a and s) near the surface. Including dust (d) allows
the lower and middle atmosphere to be corrected more
effectively (reflected in the radiance errors between 620 cm−1

and 700 cm−1), while independently including surface
properties (s) allows the surface properties to be corrected
and reduces surface radiance errors (below 620 cm−1 and
above 700 cm−1). Including dust and surface properties
(a) performs the best of all, reducing the RMS errors more
than the implied linear combination of corrections from the
surface property (s) and dust (d) assimilations.
[56] Comparison with retrieved temperatures from TES

(shown previously in Figures 7 and 8, not shown for the
additional assimilations) again suggests that the assimila-
tions performs comparably over the middle atmosphere
while having differing impacts on the near surface temper-
ature and particularly the ice‐edge atmosphere. However,
the trend remains the same, with (a) performing the best,
and (f) performing the worst. Assimilation (d) has little effect

Figure 11. As Figure 4 for each of the assimilations dis-
cussed in section 4. (top) RMS Errors for the morning
observations period of the final sol, (bottom) RMS Errors
for the afternoon observations period of the final sol. (red)
Assimilation with surface components and dust in the state
vector, (green) assimilation with surface components, (blue)
assimilation with dust but without surface components,
(cyan) assimilation with neither surface nor dust compo-
nents in the state vector, and (grey) the TES observational
error for the last sol.
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on the surface‐dominated radiances, but corrects some of the
temperature errors relative to TES retrievals and is compa-
rable to the best assimilation (a) in the lower and middle
atmosphere (where the model is most sensitive to dust). The
(s) assimilation performs well in the lower atmosphere and
in the surface fields,
[57] Figures 12 (morning) and 13 (afternoon) show sum-

mary plots for the four assimilation tests, showing ensemble
mean temperature minus TES retrieved temperature for the
last sol of the assimilations. Whether assimilated or not, the
ensemble is generally warmer than TES data (as shown in
earlier figures), and the corrections generally reduce the bias
in temperatures by cooling the atmosphere. The assimilation
with surface and dust components in the state vector is best
designed to accomplish this, and the (f) assimilation with no
dust nor surface properties in the state vector is again the
worst. The effect is strongest in the lower atmosphere where
these components have the greatest effect and where the
warm bias is largest.
[58] In the upper atmosphere where the bias is less posi-

tive and sometimes negative, the difference between the
assimilations is smaller. The apparent lack of correction is
in part due to the over‐confident ensemble producing
extremely low variance in the (observable) radiances (e.g.,
Figure 2), but also because corrections in the lower atmo-
sphere are propagated by the fixed dust profile to the upper

atmosphere. This latter effect causes some errors to increase
in the assimilations where the bias is already negative. For
example, the southern hemisphere at 50 Pa (Figure 13) is
cooled even though it is already too cold, because of the
cooling of the lower atmosphere.

5. Summary and Conclusions

[59] We have developed an ensemble DA system to ingest
calibrated radiance data from the TES [Christensen et al.,
2001] instrument aboard the MGS orbiter. The DA system
uses DART [Anderson et al., 2009] to drive the MarsWRF
GCM [Richardson et al., 2007], and a custom radiance
forward model based on the MarsWRF internal radiation
parameterization [Mischna et al., 2006; Johnson et al., 2008]
to simulate the observations of the atmosphere made by TES.
[60] We tested this data assimilation system with a short

integration of a 20 member ensemble using data from the
start of the TES nominal mission, during July and August,
1999. We used approximately 1.6 million observations from
the TES database to provide observations of the atmosphere
over a 40 sol period (20 degrees of heliocentric longitude)
starting at Ls = 150°.
[61] This assimilation test revealed three areas of the

GCM that can be quickly improved to provide better sim-
ulation of the climatology and weather in the Martian

Figure 12. AM ensemble temperature minus TES retrieved temperature for the last sol of the assimila-
tion. (black) nominal ensemble (no assimilation), (red) assimilation with surface components and dust in
the state vector, (green) assimilation with surface components, (blue) assimilation with dust but without
surface components, (cyan) assimilation with neither surface nor dust components in the state vector.
Each plot is a single pressure level (top‐left to bottom‐right) at 475 Pa, 224 Pa, 106 Pa, 50 Pa. The cyan
line follows the black line closely.
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atmosphere. We found evidence that the MarsWRF under‐
predicts the latitudinal extent of the surface CO2 ice during
this season, resulting in a bright bias along the polar ice
edge. One possible cause for this bias was identified in the
column dust opacity over the polar ice‐edge, where the
observations (via the assimilation) suggested that we under‐
predict the column dust loading which might reduce the
surface insolation and lower the temperature sufficiently to
reduce the sublimation there.
[62] We also found that MarsWRF tends to under‐predict

the amplitude of the surface thermal response to the diurnal
forcing. Separating the observations into morning (2:00 AM
to 4:00 AM) and afternoon (2:00 PM to 4:00 PM) time
periods highlighted a bright bias in the morning, and dark
bias in the afternoon. These biases suggested a GCM diurnal
tide response that is smaller than observed during this season.
The apparent lack of reduction in this bias further suggested
that a variable not controlled by the assimilation or present
in the GCM is responsible, for example surface thermal
properties or tropical ice clouds [Wilson et al., 2008].
[63] As a test of our assimilation we compared the thermal

structure predicted by the GCM ensemble with the tem-
perature profiles retrieved from the TES observations we
ingested. We found that the assimilation does improve the
biases over the majority of the atmosphere, and especially
near the ice‐edge in the southern hemisphere and in the
lower atmosphere. Additional tests where we limited the
state vector to atmospheric properties produced worse
results, and the assimilation was unable to correct the biases
near ice edge. In particular, omitting the surface properties
reduces the performance of the assimilation everywhere.

[64] The assimilation does not remove all model error.
Our GCM, which is within the family of modern Martian
GCMs [Johnson et al., 2008], continues to exhibit some
biases in its nominal state relative to the observed atmo-
sphere. Much of this discrepancy appears due to incorrect
parameters and models (e.g. the ice and dust lifting models
discussed here) that can be improved with incremental
changes, and more importantly progress is already being
made in this area [e.g., Kahre et al., 2010; Greybush et al.,
2011]. For example, we suggested that the lapse rate biases
in the assimilation are caused in part by the fixed dust
vertical profile that limits our ability to modify the thermal
lapse rate in the lower atmosphere. More advanced dust
models [Newman et al., 2006] and parameterizations [Heavens
et al., 2011b] suggest different dust vertical profiles that
might be more suitable than the one we used here [Lewis et al.,
1999].
[65] The biases we have found in the GCM suggest that it

is not yet ready for operational forecasting of short term
variability in the Martian atmosphere. This is equivalent to
restating the findings from model inter‐comparison studies
that show current Mars GCM exhibit errors of order 10 K
relative to zonal mean observations. However, it is clear that
the data assimilation system as a whole is functioning suc-
cessfully. We have shown that the assimilation can efficiently
ingest radiance observations of the Martian atmosphere and
surface, and that the assimilation improves the overall rep-
resentation of the Martian atmosphere by our GCM.We have
further shown that the assimilation of these observations
provides explicit guidance on when and where the GCM
lacks predictive skill, providing a crucial tool to help improve

Figure 13. As Figure 12 but for the PM temperatures.
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our GCM, and hence improve our knowledge of the Martian
climate system. Where possible, we should use these sparse
observations to improve the underlying GCM rather than
rely on empirical model corrections that appear to improve
the assimilation while ultimately degrading the quality of
long term re‐analysis.
[66] The MarsWRF GCM and data assimilation interface

described in this manuscript is available on the Mars Climate
Center Web site (http://www.marsclimatecenter.com) and
includes the tools necessary to use the MarsWRF GCM
within the DA system, and the tools necessary to convert
data from the TES database into suitable input files for use
within the DA system. A subset of the TES data used in the
example assimilation discussed in section 4 will also be
provided as a tutorial on the DA system, and as a test case of
the GCM and DA setup. DART will continue to be available
from NCAR (http://www.image.ucar.edu/DAReS/DART/)
and any modifications necessary to run the MarsWRF DA
system and tutorial will be provided.
[67] Future work with this data assimilation system will be

to perform a re‐analysis of the Martian atmosphere using the
radiance data from the TES instrument and the Mars Cli-
mate Sounder instrument (MCS) [McCleese et al., 2007] on
the Mars Reconnaissance Orbiter satellite. The data from
TES and MCS will be used to create a near continuous
record of the Martian atmosphere from 1999 to 2009 for use
in the assimilation. As a limb sounder, MCS will offer
improved vertical resolution and vertical coverage over TES
but requires additional work to create a forward with limb
sounding capabilities and to account for the increased sen-
sitivity to scattering by dust and water ice.
[68] The results from this re‐analysis will be used to create

a gridded data set including the ensemble mean prediction
and ensemble spread. This gridded data set will be released
on the MarsWRF Web site and will be updated as new ver-
sions of the MarsWRF GCM are developed and improve-
ments to the assimilation and forward model are made.
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