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Abstract

Impact crater cataloging is an important tool in the study of the geological

history of planetary bodies in the Solar System, including dating of sur-

face features and geologic mapping of surface processes. Catalogs of impact

craters have been created by a diverse set of methods over many decades,

including using visible or near infra-red imagery and digital terrain models.

I present an automated system for crater detection and cataloging using

a digital terrain model (DTM) of Mars — In the algorithm craters are first

identified as rings or disks on samples of the DTM image using a convolutional

neural network with a UNET architecture, and the location and size of the

features are determined using a circle matching algorithm. I describe the

crater detection algorithm (CDA) and compare its performance relative to

an existing crater dataset. I further examine craters missed by the CDA as

well as potential new craters found by the algorithm. I show that the CDA

can find three–quarters of the resolvable craters in the Mars DTMs, with

a median difference of 5-10% in crater diameter compared to an existing

database.

A version of this CDA has been used to process DTM data from the Moon

and Mercury (Silburt et al., 2019). The source code for the complete CDA is

available at https://github.com/silburt/DeepMoon, and Martian crater
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datasets generated using this CDA are available at https://doi.org/10.

5683/SP2/MDKPC8.

Keywords: Mars craters, Digital Terrain Model, Deep Learning,

Convolutional Neural Network

1. Introduction1

Information on crater populations and spatial distributions provide im-2

portant constraints on the geological history of planetary surfaces. Regional3

differences in crater distributions and population characteristics can be used4

to constrain geologic processes and stratigraphy (Cintala et al., 1976; Wise5

and Minksowski, 1980; Barlow and Perez, 2003; Barlow, 2005), and crater6

populations can be used to estimate the age of surface features as well as con-7

strain the timescale of surface processes (Arvidson, 1974; Soderblom et al.,8

1974; Craddock et al., 1997; Stepinski and Urbach, 2009; Tanaka et al., 2014).9

To enable such research, impact craters need to be identified, measured, and10

counted using imagery of a planet’s surface (Barlow, 1988; Salamunićcar and11

Lončarić, 2008; Robbins and Hynek, 2012).12

However, the task of creating a dataset of crater locations has tradition-13

ally been a time–consuming process of manually identifying craters in printed14

maps (Barlow, 1988) or digital imagery (Robbins and Hynek, 2012). Re-15

cent advances in automated image processing have lead to the development16

of semi-automated or fully automated Crater Detection Algorithms (CDAs,17

Stepinski et al., 2009; Di et al., 2014; Pedrosa et al., 2017; Silburt et al.,18

2019). These CDAs use different approaches and datasets, but each method19

attempts to identify crater–like features on the surface using digital imagery20
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or elevation datasets and apply image processing techniques to isolate the21

crater features. An important benefit of these CDAs is that it becomes pos-22

sible to automate large parts of the crater–finding process and reduces the23

effort required after the initial implementation.24

Automated CDAs have tunable parameters that can be optimized for the25

imagery or elevation dataset being processed. In designing the algorithms,26

a curated list of crater locations and images are used in a “training” step to27

adjust these parameters. Once trained, the CDA can be applied to larger28

datasets from the same body or even applied to different planetary bodies29

through “transfer learning” (Silburt et al., 2019).30

In this work I use an automated CDA based on a Convolutional Neu-31

ral Network (CNN, Goodfellow et al., 2016) to identify circular crater–like32

features in a martian Digital Terrain Model (DTM). I perform three exper-33

iments with the CDA to characterize its performance on the DTM under34

various assumptions. In two of the experiments I attempt to find rings asso-35

ciated with the crater rims as in Silburt et al. (2019) using CNNs trained on36

lunar data (the Silburt et al. (2019) CDA) and martian data. In the third37

experiment, I train the CNN to find disk structures associated with the entire38

crater. The latter method is commonly used in image segmentation methods39

(Ronneberger et al., 2015) and a similar method was developed by Stepinski40

et al. (2009).41

The CNN used in this work uses a standard “UNET” architecture (Ron-42

neberger et al., 2015) that is commonly used in image segmentation and43

processing, and similar CNNs have been applied to identification of tumors44

in medical images (Çiçek et al., 2016), identification of radio frequency in-45
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terference in astronomical data (Akeret et al., 2017), and crater detection46

on the Moon using a DTM from the Lunar Reconnaissance Orbiter (Silburt47

et al., 2019). The architecture of the CNN is not the primary purpose of48

this work, and the reader is referred to the referenced work for an in–depth49

discussion of the methodology.50

The remainder of this paper is organized as follows: in section 2 I review51

prior work in developing automated CDAs; in section 3 I describe of the52

crater detection algorithm, the training and data processing involved, and53

the structure of the experiments; in section 4 I discuss the metrics calculated54

for each experiment and examine the new crater datasets in detail; finally,55

in section 5 I provide concluding remarks.56

The software used to make CDA described here is based on the work of57

Silburt et al. (2019) with three modifications: The source data used here58

retains the 16–bit raw precision of the source DTM compared to 8–bit image59

used in Silburt et al. (2019); a disk–finding CNN is implemented with an60

additional processing step, discussed later; the distance and size thresholds61

used to determine duplicates and matches in the database were reduced to62

0.25 of the crater diameter (from 2.6 and 1.8 diameter units).63

The original code is available at https://github.com/silburt/DeepMoon.64

git , updates and modifications to the code can be found at https://65

github.com/eelsirhc/DeepMars.git . The datasets generated here, along66

with ancillary data, can be found at https://doi.org/10.5683/SP2/MDKPC8.67

Similarly to Silburt et al. (2019), I use Keras (Chollet, 2015) version 2 with68

Tensorflow (Abadi et al., 2016) to build, train, and test the model. In train-69

ing the model I used an Nvidia 1080 Ti GPU using the CUDA and CUDNN70
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support libraries, but the code is compatible with Intel and AMD CPUs.71

2. Prior Work72

One of the first large global databases for Mars was created by Barlow73

(1988) using printed maps from Viking orbiters and included 25,826 craters74

with a diameter greater than 8km. This dataset has been updated since then75

(Barlow, 2010) with 42,483 craters, and other datasets are available (Rodi-76

onova et al. (2000) with 19,308 craters, Salamunićcar and Lončarić (2008)77

with 57,633 craters). The most comprehensive dataset for Mars craters is78

that derived from the Thermal Emission Imaging System (THEMIS) instru-79

ment by Robbins and Hynek (2012). The Robbins and Hynek (2012) dataset80

includes 383,343 craters with diameters greater than 1km, including 30,47381

craters above 8km diameter. These craters were identified in 100m/pixel82

scale THEMIS IR imagery using a customized manual image processing83

pipeline. The Robbins and Hynek (2012) dataset is reported to be statis-84

tically complete to 1km diameter for the majority of Mars covered by the85

source THEMIS dataset, reflected in the power law distribution following the86

expected distribution to diameters of 1km or lower (Arvidson et al., 1979).87

In this work I consider craters with a diameter greater than 4km based on88

the resolution limit of the input DTM.89

In contrast to the attempts to catalog martian craters using manual meth-90

ods, automated CDAs have not been extensively used to generate global91

catalogs of martian craters, but have been used to catalog small test areas92

containing a mixture of crater types. Two common metrics used in machine93

learning comparisons are precision and recall, whose mathematical defini-94
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tions are given in the next section. Precision is the fraction of craters found95

by the CDA that exist in a target dataset (usually a subset of Barlow (1988)96

or Robbins and Hynek (2012)), and the recall is the fraction of craters in the97

target dataset that are found by the CDA. In the calculation of precision, the98

effect of detected craters that are real, but do not exist in the target dataset,99

is to decrease the precision.100

Stepinski et al. (2009) developed the AutoCrat CDA using the 128pixels/101

degree DTM from the Mars Orbiting Laser Altimeter (MOLA) instrument.102

The AutoCrat CDA combines a “rule-based” module that applies gradient–103

based algorithms to identify local depressions as possible craters, followed104

by a “machine-learning” module that applies a decision tree algorithm (Wit-105

ten and Frank, 2005) to determine whether the feature is a crater or not.106

The decision tree algorithm is used to differentiate craters from non–crater107

depressions using diameter, depth, and shape parameters as factors. Only108

a small fraction of the planet is covered in Stepinski et al. (2009), with a109

reported precision of 42% (1,544 known craters out of 3,666 detections) and110

a recall of 72% (1,544 out of 2,144 known craters were found). A global111

database generated using this CDA was reported in Stepinski and Urbach112

(2009) with 75,919 craters larger than 1.37km.113

Di et al. (2014) developed a CDA that also processed DTM images. Their114

CDA uses a sliding window correlator to find and highlight crater edge fea-115

tures and a circular Hough transform to transform those highlighted crater116

edges into locations and sizes. Di et al. (2014) reports on the CDA perfor-117

mance for three sites with 11,868 craters, but they do not provide an explicit118

calculation of precision and recall. Di et al. (2014) reports finding 934 craters119
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in total, with 114 false positives (a precision of 87%) with a recall rate using120

the same data (their table 2) of 74% for craters with a diameter greater than121

6km, but a recall rate of less than 10% for all craters tested.122

Pedrosa et al. (2017) developed a CDA using thermal imagery from123

THEMIS. The CDA processes THEMIS IR imagery by first identifying geo-124

physical depressions using a ‘watershed’ transform (to find virtual flood-125

plains) and then within each watershed identified the local minima as pos-126

sible craters. A circle template matching algorithm is then used to compare127

the crater features to a characteristic ring representing the crater rim. Pe-128

drosa et al. (2017) reports a precision and recall of 65% and 91%, respectively129

(their figure 7), compared to a target dataset of 3,600 craters. The template130

matching system employed by Pedrosa et al. (2017) is similar to the method131

used in Silburt et al. (2019) and here to find the location of each crater.132

Salamunićcar et al. (2011) provides a summary of many more automated133

CDAs, and a discussion of the effect of combining multiple CDAs into one134

dataset. The various methods used in the CDAs are essentially the same135

as the CDA developed here. A correlation function is used to identify fea-136

tures that identify a crater — edges in Di et al. (2014), disks in Stepinski137

et al. (2009), opposing crescents in Pedrosa et al. (2017). Once the crater138

is identified a circle finding algorithm is used to determine the location and139

size — a Hough transform in Di et al. (2014), a sliding window correlator140

in Pedrosa et al. (2017). In the CDA developed here, discussed in detail in141

the next section, the CNN implements a sequence of correlation functions to142

identify and highlight the crater, followed by a circle matching algorithm to143

determine the location of the craters.144
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3. Methods145

3.1. Input dataset146

The source digital terrain model (DTM) for this work is the “Mars HRSC147

MOLA Blended DEM Global 200m v2” (Fergason et al., 2018) dataset avail-148

able from the Astrogeology Science Center website (https://astrogeology.usgs.gov).149

This map is a blend of digital terrain models derived from the Mars Orbiter150

Laser Altimeter (MOLA, Smith et al., 2001) aboard the Mars Global Sur-151

veyor spacecraft, and the High-Resolution Stereo Camera (HRSC, Jaumann152

et al., 2007) aboard Mars Express. The stated scale of the dataset is 200m/153

pixel horizontally, chosen as a compromise between the 463m/pixel scale of154

MOLA and the 50m/pixel scale of HRSC. However, the HRSC data covers155

only 44% of the planet, so more than half of the planet is interpolated from156

MOLA dataset at 463m/pixel scale. Some regions have no data from either157

spacecraft. The stated accuracy of each point is 100m horizontally and at158

best 1m radially (Fergason et al., 2018). The total image size of the DTM159

is 106694× 53347 pixels with 16–bit resolution for the elevation data, using160

a simple cylindrical (Plate Carrée) projection. The effective resolution of161

this source image is 1
296

th of a degree, and 1
2

m vertically (better than the162

resolution of the input data).163

The CDA takes as input a 256 × 256 pixel 8–bit image taken from the164

larger DTM and attempts to identify craters within this image. The size and165

bit resolution are chosen to fit in the memory limits of the hardware being166

used. To prepare an image for use with the CDA I use the following steps:167

1. A square sample is extracted from the DTM and resampled into the168

required 256× 256 size.169
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2. The bit resolution of the image is rescaled from the 16–bit source to the170

8–bit resolution required for the CDA. This step occurs after resampling171

the image to a smaller region to mitigate the effect of the large altitude172

variation on Mars.173

3. The image is orthographically projected using the Cartopy Python174

package (Met Office, 2018) to provide an image with near–constant lin-175

ear scale instead of the constant angular resolution of the Plate Carrée176

projection.177

4. Padding is added to the image as required to fill in the square image af-178

ter projection. The Orthographically projected image always occupies179

fewer pixels than the Plate Carrée source image.180

The size of the image sample (step 1) is chosen from a list of sizes from 512181

to 16,384 pixels to provide a range of scales from 400m/pixel to 12.8km/pixel.182

The full dataset is constructed by sampling the entire planet at a range of183

pixel scales and with overlapping regions between adjacent images, requiring184

55,000 images in total. I also tested an additional 150,000 images sampled185

at the original scale of the DTM (200m/pixel) but the performance of the186

CDA degrades substantially because of the coarser scale of the majority of187

the input DTM. An alternate method used by Silburt et al. (2019) was to188

select the location and size of the images at random, which provides similar189

statistical results to the systematic method above, but would not guarantee190

planet-wide coverage.191

3.2. Experiments192

In this work I performed three experiments with the CDA. The first193

experiment uses a CNN trained on Lunar data (Silburt et al., 2019) to find194

9



ring structures associated with the crater rim. This CNN has not been195

previously trained on Mars crater observations and is an example of transfer196

learning.197

The second experiment modifies the first by training the CNN using a198

subset of the Mars crater imagery without using the previously Moon trained199

CNN. The target data for the training is derived from a human–generated200

crater database (Robbins and Hynek, 2012) using high–resolution infra–red201

imagery. In the second experiment the CNN is trained to identify rings202

associated with the rims of craters, and a summary of the training method203

is provided in the next subsection.204

In the third experiment the CNN is modified to identify disks associ-205

ated with craters, instead of rings. This approach follows the same training206

methodology as the ring finding CNN, but with a modified training dataset207

and crater matching algorithm. To keep the comparison as close as possible I208

use the same image locations for both trained CNNs, and in the disk finding209

CDA I convert crater features highlighted by the CNN to ring structures210

before attempting to locate the craters. This disk–ring conversion makes211

comparison easier between the CNNs but is not necessarily an optimized212

algorithm for the disk finding CDA.213

3.3. Training and Validation214

Training and validation follows the method outlined in Silburt et al.215

(2019), and an example is given in figure 1. A sample image is taken from216

the dataset (figure 1–left) and the locations of resolvable known craters are217

taken from the Robbins and Hynek (2012) and drawn as white pixels on218

an otherwise black ‘image’ (figure 1–center). The CNN is then trained by219
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exposure to a large number of images and trained to encode the DTM into220

the binary ring image (figure 1–center). Figure 1 is one of the 15 images221

in the dataset that includes a majority of Gale crater in the image – this222

figure is centered on 137 degrees east longitude, 8 degrees south longitude,223

at 3.2km/pixel scale.224

Figure 1–right super-poses the input DTM image with the known craters225

(Robbins and Hynek, 2012) in red and craters found by the ring finding Mars–226

trained CDA in blue. In this image overlapping blue and red circles identify227

craters correctly identified by the CNN (though some are displaced spatially),228

red circles with no blue counterpart are missed craters (false negatives in229

machine learning terminology), while blue circles with no red counterpart230

are features incorrectly identified as craters by the CNN (false positives). In231

principle, the false positives might be new craters, but I will suggest later232

that the majority are not new craters, although some are genuine circular233

features (e.g., paterae).234

For the CNN trained with martian craters, I use 30,000 images distributed235

in location and scale in the training dataset (5,000 images were reserved for236

a testing stage during the training), and 25,000 images in the validation237

dataset. The images are distributed geographically so that both datasets238

contain unique images but similar spatial distributions. The image extents239

are also distributed between datasets, with similar numbers of each scale240

in each dataset. The small number of large geographically extended im-241

ages (fewer than 500) means they are unevenly distributed between the two242

datasets.243

The CNN training is assumed complete either when accuracy on the train-244
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Figure 1: Example DTM image (left),target map (center), and identified craters (right).

The DTM is extracted from the source HRSC+MOLA map at 137E longitude, 8S latitude

with a resolution of 18 pixels per degree (approximately 3.2 km/pixel). Gale crater is

located at the center–top of the image, and is found by the CNN in this example. The

right plot does not include craters that are smaller than 4 pixels in diameter for clarity.

Red circles show craters from the Robbins and Hynek (2012) dataset, blue circles show

craters found by the CDA.
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ing dataset stops improving, or when the number of iterations has reached245

the maximum allowed. In Silburt et al. (2019), the CNN was trained with246

30,000 images of the Moon for 4 complete iterations. For the Mars trained247

CNN I allowed up to 30 iterations, with a typical training taking 10 iterations248

before the accuracy stopped improving.249

The CNN does not produce a location or size for each crater in the image,250

but instead transforms the DTM image into a binary image that highlights251

topographic features that are related to craters. The CNN is best at high-252

lighting features that are between 10 and 60 pixels in diameter in any par-253

ticular image, resulting in a large number of missing craters in each image.254

Small craters are represented by too few pixels to be positively identified.255

Large craters become diffuse or incomplete circles fall below the detection256

threshold. In figure 1, Gale crater was among the largest identified features,257

even though a few larger craters are visible in the image.258

3.4. CNN Processing259

The location and size of the craters in the CNN images are determined260

using the match template algorithm from scikit-image (van der Walt et al.,261

2014). The match template algorithm finds the location and size of each cir-262

cular feature by maximizing its correlation with a template circle of known263

size. To allow comparison with the Silburt et al. (2019) study I keep the264

same threshold parameters for the circle matching algorithm, though small265

improvements may be possible with more extensive re–training of the algo-266

rithm. For each crater map generated by the CNN the location and size of267

craters are found with the following steps:268

1. A candidate circle size is chosen and used to generate a template image.269
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2. The candidate circle is compared against all locations in the binary270

crater image generated by the CNN. The resulting map becomes a “heat271

map” of correlation between the candidate circle and the template.272

3. Where the correlation between the crater map and the candidate circle273

exceeds a confidence threshold that location is identified as the crater274

location and the size of the candidate circle is used as a crater size.275

This template matching process is conducted for circles with integer radii276

from 5 pixels to 40 pixels. For architectural reasons the CNN rarely predicts277

craters smaller than 10 pixels in diameter or larger than 60 pixels, with typical278

minimum and maximum diameters of 10 pixels and 30 pixels, respectively.279

The circle matching algorithm performs poorly for circles with a diameter280

smaller than 10 pixels where it considers diffuse segments of larger craters281

as potential small craters, resulting in ’rings’ of small craters around larger282

craters. Duplicate craters are removed in each image by identifying craters283

that are within 0.25 diameter units in size and within 0.25 diameter units284

in location of another crater. These values are smaller than those used by285

Silburt et al. (2019).286

The result of this post-processing is a list of unique craters found in each287

input image, before any comparison with the Robbins and Hynek (2012)288

database. In the right panel of figure 1 this post-processing produced the289

blue circles, while the Robbins and Hynek (2012) craters with a diameter of290

at least 4 pixels are shown as red circles.291

The disk–finding CNN is trained to highlight craters by replacing the292

crater in the DTM with a solid disk in the binary image, instead of a ring293

surrounding the crater. After the disk CNN has processed the DTM scene a294
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Sobel and Feldman (1968) transform is used to convert this disk into a ring295

to emulate the output of the ring–finding CNN. After this additional step,296

the analysis follows the ring finding method above.297

A downside of the disk finding method is that overlapping craters are not298

easily separated. An overlapping crater system is filled with the same binary299

value so that overlapping craters are identified as single non-circular features300

and are rejected by the circle matching algorithm. The CDA developed by301

Stepinski et al. (2009) is also a type of disk finding algorithm but uses a pre-302

processing step of Gaussian blurring to provide images with 3 different length303

scales to overcome the problems associated with small craters within large304

craters. The blurring does not separate similarly sized overlapping craters.305

3.5. Post Processing306

The image dataset contains 55,000 images with resolutions ranging from307

150 pixels/degree to 4 pixels/degree covering the planet. As a result, a single308

location would appear at up to 7 different resolutions in 15± 6 images (the309

variation is due to the use of overlapping images). For example, Gale crater310

appears at 5 resolutions in 9 images.311

Each of the 55,000 images is processed by the CNN and template match-312

ing algorithm to find craters independently of the other images. The location313

and size of each crater is found in pixel space during the template matching314

stage, and then converted into geographic coordinates using the known limits315

of each image and the orthographic projection parameters.316

As a result of the overlapping images and multiple resolutions, single317

craters may be identified in multiple images and appear multiple times in the318

generated global crater list. Duplicate craters are removed by comparing the319
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Figure 2: DTM images where more than 50% of Gale crater is contained in the image.

Gale crater is highlighted with a red circle (using the Robbins and Hynek (2012) location)

and a blue circle where it was identified by the CDA in each image. The CDA identified

the crater in 5 images in this example data (4,5,7,8,9). The crater in images 1,2, and 3 is

probably too big for the current algorithm. Image 2 and 6 only include partial circles and

lie below the detection threshold.
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diameter and location of the crater with other craters with similar location320

and size, using the same parameters as in the last section.321

Figure 2 shows the 9 images that include more than 50% of Gale crater.322

In this example, Gale crater was found in 5 images. The 5 candidate craters323

are combined in the post-processing stage to provide 1 location and size for324

Gale crater, preferentially using the values found in the highest resolution325

image.326

Once all duplicates are removed the final result is a database with ap-327

proximately 60,000 craters found by the CDA. This list includes only craters328

larger than 4km in diameter, the lower limit allowed in the algorithm. Above329

this 4km limit, the ring CDAs found 75% of all craters listed in the Robbins330

and Hynek (2012) database. Above 10km diameter, the ring CDAs found331

more than 80% of all craters in the Robbins and Hynek (2012) database.332

The algorithm itself has no lower limit in geophysical space but does have333

a lower limit in pixel space. The circle–matching algorithm works well for334

circles 10 pixels in diameter or larger, and continues to work down to 6–pixel335

diameter circles but with a higher false positive rate. Ten pixels in diameter336

represents a physical limit of 4km in diameter using the 400m/pixel scale im-337

ages. As a comparison, Robbins and Hynek (2012) used 100m–230m/pixel338

THEMIS infra-red imagery that covers more of the planet than the DTM339

used here and the crater size limit reported in Robbins and Hynek (2012)340

is 1km, or 10 pixels at the highest THEMIS image resolution. Robbins and341

Hynek (2013) suggested a lower diameter limit of 10km for MOLA derived342

DTM data, noting that imagery derived DTMS (e.g., from HRSC) are better343

at resolving smaller craters.344
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3.6. Accuracy Metrics345

In each experiment, the performance of the CDA is measured against346

the Robbins and Hynek (2012) database using a number of standard met-347

rics. The crater locations in the CDA database and the Robbins and Hynek348

(2012) database are compared using the same methodology used to find du-349

plicate craters. If the CDA finds a crater within 0.25 diameter units in350

location and size of a crater from the Robbins and Hynek (2012) database351

then it is considered a match. A True Positive is a match between the CNN352

and Robbins and Hynek (2012) database, a False Positive is a crater in the353

CDA database without a matching crater in the Robbins and Hynek (2012)354

database, and a False Negative is a crater in the Robbins and Hynek (2012)355

database without a matching crater in the CDA database. True Negatives356

are not used.357

Using these definitions, the precision P is defined as the ratio of true358

positive to all identifications, and the recall R as the ratio of true positives359

to all craters in the Robbins and Hynek (2012) database.360

P =
Tp

Tp + Fp

, (1)

R =
Tp

Tp + Fn

(2)

Where Tp, Fp, and Fn are the numbers of true positives, false positives,361

and false negatives, respectively. A high precision suggests the CDA has a362

high fractional true positive rate, while a high recall suggests the CDA finds363

a high fraction of the existing craters.364

As an extreme example, the CDA could identify craters everywhere on365
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Mars whether they exist or not, resulting in a perfect recall (all craters are366

found) but almost no precision (many false positives are found). Alterna-367

tively, the CDA could identify a single crater correctly, resulting in perfect368

precision (no false positives) but almost no recall (many missing craters, or369

having many false negatives). A common metric used to balance the preci-370

sion and recall is the harmonic average of the two metrics, commonly called371

the F1 score,372

F1 =
2PR

P + R
(3)

where the same F1 value can be found using different combinations of pre-373

cision and recall. None of these metrics reward identification of new craters374

that do not exist in the Robbins and Hynek (2012) database. All new iden-375

tifications are assumed false positives and reduce the precision and F1 score.376

The possible new crater fraction N is calculated as the ratio of false positives377

to the sum of false positive and Robbins and Hynek (2012) craters,378

N =
FP

FP + TR

(4)

Where TR is the number of true craters in the Robbins and Hynek (2012)379

database. This is an upper limit on the number of new craters found, and380

because the Robbins and Hynek (2012) database is statistically complete381

below the 4km limit used here it is likely that many false positive are genuine382

false positives and not new craters. In Silburt et al. (2019) a sample of the383

false positive craters was studied and they estimated that 90% of the false384

positive craters are new craters.385

For further comparison with the Robbins and Hynek (2012) database I386
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also calculated the difference in longitude, latitude, and diameter between the387

CNN craters and Robbins and Hynek (2012) craters, both in pixel units and388

geophysical units. Each of these metrics is calculated as the ratio relative to389

the smallest crater diameter in the comparison and given as the mean value390

and interquartile ranges for the dataset.391

3.7. Error Sources392

A number of sources of error are present in the experiments, from ob-393

servational constraints, pixelization of the source data, and the algorithm394

design.395

The source DTM combines HRSC and MOLA data at a stated scale of396

200m/pixel. However, this is obtained by upsampling the MOLA data from397

463m/pixel for 56% of the surface, and downsampling HRSC images for the398

remaining 44%. The smallest image scale used in this experiment was 400m/399

pixel, close to the MOLA laser footprint of 300m, giving a accuracy limit of400

.4km in crater location and diameter (i.e., 1 pixel).401

The crater position is extracted by matching circular templates on images.402

The discrete nature of the images limits the matches to 1 pixel in any image.403

At the highest image resolution used this corresponds to the .4km accuracy404

limit above, but in images with a larger pixel scale the accuracy decreases405

at a corresponding rate. At the 12.8km/pixel scale for the largest images,406

the accuracy drops to about 6km at the equator. In practical terms, a crater407

is likely to be found when it is between 10 pixels and 30 pixels in diameter,408

making the 1 pixel uncertainty equivalent to a 3–10% error in position or409

diameter. When the global CDA database is generated, the highest resolution410

image that included the crater detection was used to obtain the best overall411
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position and size data for each crater in the final dataset. For example, in the412

Gale crater example in figure 2, image 4 or 5 would be used when calculating413

the location and size of the crater.414

Projecting the DTM from Plate Carée into orthographic and back in-415

troduces some errors depending on the extent of the image, as distortion416

increases away from the center point of the projection. Silburt et al. (2019)417

estimated an error of 2% in the crater size for typical images, which becomes418

larger than the pixelization errors for craters larger than about 50 pixels in419

diameter. Few craters were found larger than 30 pixels in diameter so the420

contribution of this error is negligible.421

Finally, algorithmic implementation also introduces some uncertainty. In422

the CNN step, the image bit resolution is limited to 8–bits of data, which for423

large images with vertically extended topography would obfuscate shallower424

craters – 1km of vertical extent requires a vertical resolution of 4m at best,425

while an image that includes Olympus Mons and the surrounding terrain426

might be limited to 100m vertical resolution. In the template matching step,427

spurious matches can occur when comparing small candidate craters against428

large craters as the template matches along the crater wall, or comparing429

candidate circles against the space between two or more nearby craters if the430

’void’ between the craters can be identified as a crater.431

4. Results432

Table 1 gives the metrics for the three different experiments. All of the433

metrics are calculated using the same source images but the training of each434

network is different. The “Moon” trained CDA uses the network generated435
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Moon Moon Mars Mars Disk Disk

(image) (global) (image) (global) (image) (global)

Crater count 9.9± 10.0 57, 564 9.9± 10.0 57, 564 9.9± 10.0 57, 564

Craters detected 4.8± 5.1 54, 739 4.9± 5.2 57, 767 5.1± 4.9 75, 733

Craters matched 4.3± 4.7 42, 445 4.4± 4.8 42, 891 4.3± 4.7 39, 149

Latitude Error 4+2
−1 2+1

−1 4+2
−2 2+1

−1 4+2
−2 2+1

−1

Longitude Error 5+2
−2 2+2

−1 5+2
−2 3+2

−1 5+2
−2 2+2

−1

Diameter Error 6+3
−3 5+4

−3 7+3
−3 6+4

−3 9+4
−4 6+5

−3

Percentage new craters 5± 8 18 5± 8 21 7± 11 39

Maximum diameter (pix) 34.1± 20.0 − 33.5± 19.8 − 32.7± 18.9 −

Precision 90± 18 78 89± 19 74 84± 23 52

Recall 42± 21 74 43± 21 75 44± 23 68

F1 58± 17 76 59± 17 74 58± 18 59

Table 1: Metrics calculated for three neural network based CDAs. “Moon trained” and

“Mars trained” refer to the data used to train the initial model. “Disk” trained using

Mars crater imagery in training, but identified disks associated with craters instead of

crater “rings”. All metrics were calculated using the same martian crater images from

MOLA/HRSC. Values are given as mean ± 1 standard deviation (for single values after

the ±) or median ± inter–quartile range (for two values after the ±) as in Silburt et al.

(2019). Precision, recall, and F1 scores are given as percentages. Each model appears

twice, with the “image” column given the per image metrics aggregated over the ensemble

of 55,000 images (after removing duplicates per image), and the “global” column gives the

post-processed metrics (after removing duplicates globally).

by Silburt et al. (2019) with no further training. The “Mars” trained CDA436

uses the network trained on a subset of the martian crater database, where437

the network is trained to find the crater rim. The “Disk” trained network438

is also trained on martian crater images, but is trained to find the whole439

disk of the crater, instead of just the rim. Table 1 includes data from 55,000440

images derived from the global MOLA/HRSC DTM. A smaller dataset using441

only images that were withheld during the training phase for the “Mars442
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trained” CNN is shown in table 2. None of the CDAs were shown the images443

summarized in table 2 during training.

Moon Moon Mars Mars Disk Disk

(image) (global) (image) (global) (image) (global)

Crater count 8.1± 5.3 32, 979 8.1± 5.3 32, 979 8.1± 5.3 32, 979

Craters detected 3.9± 3.1 26, 808 4.0± 3.2 28, 198 4.2± 3.2 34, 419

Craters matched 3.4± 2.9 21, 732 3.5± 2.9 21, 985 3.5± 2.9 19, 949

Latitude Error 4+2
−1 2+1

−1 4+2
−2 1+1

−1 4+2
−2 1+1

−1

Longitude Error 5+2
−2 2+2

−1 5+2
−2 2+2

−1 5+3
−2 2+2

−1

Diameter Error 6+3
−3 5+4

−3 7+3
−3 6+4

−3 8+5
−4 6+5

−3

Percentage new craters 4± 8 13 5± 8 16 8± 11 30

Maximum diameter (pix) 34.1± 20.3 − 33.6± 20.2 − 32.6± 19.1 −

Precision 90± 18 81 89± 19 78 83± 24 58

Recall 42± 22 66 43± 22 67 44± 23 60

F1 58± 18 73 59± 18 72 58± 19 59

Table 2: Metrics calculated using the validation dataset as in table 1, but for a subset of

the images not used in training the “Mars trained” or “Disk trained” networks.

444

When training machine–learning algorithms there is a risk of ‘overfitting’445

where the algorithm becomes significantly better (by some metric) on the446

dataset it is trained with, at the expense of performing poorly on data it has447

not been shown. This overfitting can be seen when the precision (or recall,448

or F1 score) of the algorithm is much higher for a ‘training’ dataset than449

an unseen ‘validation’ dataset. Comparing the results in table 1 and 2, the450

metrics calculated for the validation dataset and the complete (validation451

and training) dataset suggests the networks are not overfitting the training452

data. This is reinforced by the performance of the “Moon” trained CDA453

that has never been trained using the Mars dataset. Differences between the454

global and validation metrics for this CDA reflect statistical differences in455
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the performance of the CDA on the two datasets.456

In the following subsections I examine the performance of the CDA in457

more detail. The results are separated by the type of detection: section 4.1458

examines all CDA crater detections in comparison to the Robbins and Hynek459

(2012) dataset; section 4.2 examines at the matched (true positives) in the460

CDA datasets; section 4.3 examines the craters missed by the CDA (false461

negatives), and I use the extended data provided in the Robbins and Hynek462

(2012) dataset to identify the characteristics of the those missing craters;463

finally, section 4.4 examines the craters found by the CDAs that do not exist464

in the Robbins and Hynek (2012) dataset – the false positives.465

4.1. All Craters466

First, I compare the complete dataset generated by CDAs to the Robbins467

and Hynek (2012) dataset. Figure 3 shows the crater distribution binned by468

diameter following the power law distribution used in Robbins and Hynek469

(2012), and shows good agreement between the CDAs and the expected power470

law distribution. I used 16 bins per octave (Robbins and Hynek, 2012) of471

crater size instead of the 2 bins used in (Stepinski et al., 2009) and Arvidson472

et al. (1979). The discretization present in the diameter measurements from473

the CDAs has been removed from the data by applying a Gaussian noise474

multiplier (with magnitude of 5%, smaller than the global mean diameter475

error in table 1 of 7%) to each data point. With only 2 bins/octave (Arvidson476

et al., 1979) the distributions would agree with each other without the need477

for the de–aliasing jitter in the CDA data. The peaks at 8km and 16km are478

residuals of this jittering process and represent the smallest crater sizes found479

in the most common image resolutions used in the experiments. The CDA480
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finds 80% of the craters larger than 10 km diameter listed in the Robbins481

and Hynek (2012) database, and 75% of craters larger than 4km in diameter.482

Craters below 4km are omitted from this dataset because of the lack of DTM483

data that resolve these craters.484
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Figure 3: (left) Crater population as a function of crater diameter (km) for the datasets

generated by the CDAs. (Right) R factor (Arvidson et al., 1979) for the same dataset. The

raw dataset from the CDA contains aliasing due to the small number of image resolutions

used in the algorithm. This discretization has be removed from the data by applying a

random jitter to the crater sizes equal to 5%, smaller than the mean diameter error over

all CDA datasets in table 1.

Table 3 gives the crater numbers in each of the geologic unit types listed485

in Tanaka et al. (2014) for the 3 CDAs and the Robbins and Hynek (2012)486

database. The numbers are similar in the two ring–finding CDAs and the487

Robbins and Hynek (2012) database, although there are craters listed in488

the CDA datasets that are not present in the Robbins and Hynek (2012)489

database (the TPR percentage shown in the table reflects this). The disk–490
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Apron Basin Highland Impact Lowland Polar Transition Volcanic

Robbins Count 116 467 41,749 3,016 2,858 660 3,587 5,112

Mars Count 128 585 40,181 3,129 3,322 911 3,645 5,866

TPR (%) 49 53 79 72 68 44 68 69

Moon Count 108 521 38,376 2,990 3,089 785 3,397 5,473

TPR (%) 56 58 81 76 73 52 72 74

Disk Count 218 1,008 48,328 4,020 5,314 1,389 5,716 9,740

TPR (%) 20 26 59 52 42 26 40 39

Table 3: Distribution of craters by geologic unit type given in Tanaka et al. (2014). The

‘Robbins’ row gives the distribution of craters derived from craters in the Robbins and

Hynek (2012) database. The True Positive Rate (TPR) gives the percentage of craters

found by the CDA that exist in the Robbins and Hynek (2012) database.

finding CDA tends to find many more craters in all geologic units and has491

more false positives (lower TPR) as a result. Figure 4 shows the same results492

but binned by longitude and latitude instead of geology. The two ring–finding493

CDAs tend to under–predict craters in regions with many craters, and over–494

predict in regions with few craters. The disk–finding CDA over–predicts the495

number of craters almost everywhere.496

4.2. Matched Craters497

The Robbins and Hynek (2012) dataset used here contains 57,564 craters498

greater than 4km in diameter. The ring CDAs tested find 75% of the craters499

in the Robbins and Hynek (2012) dataset with a median difference in location500

of 2% and diameter of 5% measured in geophysical units relative to the crater501

diameter. This difference is typical of variability between human analysts in502

crater studies (Robbins et al., 2014). In raw pixel terms, the differences in503

position and size between the CDA and Robbins datasets are typically 1 or504

2 pixels. The distribution for each metric in pixel space is shown in figure 5,505
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Figure 4: Plate Carée maps of the crater number predictions from the CDA relative to

the Robbins and Hynek (2012) dataset, binned into 5 degree square bins and scaled to

represent the number of craters per 10,000 square kilometer predicted by each CDA in

excess of the Robbins and Hynek (2012) database. Positive numbers (reds) represent an

over–prediction by the CDA and negative numbers (blues) represent an under–prediction.

27



4 2 0 2 4
Error (pix)

0.0

0.2

0.4

0.6

0.8

1.0

De
ns

ity

horizontal (pix)
Moon
Mars
Disk
Ring+Disk

4 2 0 2 4
Error (pix)

0.0

0.2

0.4

0.6

0.8

1.0

De
ns

ity

vertical (pix)
Moon
Mars
Disk
Ring+Disk

4 2 0 2 4
Error (pix)

0.0

0.2

0.4

0.6

0.8

1.0

De
ns

ity

Radius (pix)
Moon
Mars
Disk
Ring+Disk

Figure 5: Distribution of pixel level differences between the CDA crater detection and

the Robbins and Hynek (2012) dataset. Two additional merged CDA datasets are also

included. “Ring+Disk” includes craters found in both the Mars CDA and the Disk CDA.

Density is given in units of ”per pixel” and is normalized.
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with the median and inter-quartile ranges given in table 4.506

Moon Mars Disk Ring+Disk

Horizontal (longitudinal) 0.6+0.4
−0.4 0.7+0.4

−0.4 0.6+0.4
−0.4 0.7+0.3

−0.3

Vertical (latitudinal) −0.1+0.4
−0.4 0.03+0.4

−0.4 −0.06+0.5
−0.5 0.009+0.3

−0.4

Diameter 0.4+0.3
−0.3 0.4+0.3

−0.3 −0.4+0.3
−0.3 −0.05+0.3

−0.2

Table 4: Median and inter-quartile ranges for the image level differences between the

Robbins and Hynek (2012) crater database and the CDA predictions. All values are given

as median and interquartile values of the pixel level differences between the CDA and

Robbins and Hynek (2012) data.

The ring trained CDAs and the disk trained CDA have similar accuracy507

on the location but the opposite sign in the crater diameter differences. This508

apparent bias may be a result of the method used to generate each prediction,509

as the disk–finding CNN uses a Sobel and Feldman (1968) transform to con-510

vert the predicted disks into rings, and places the ring within the perimeter511

of the disk, instead of on the outer edge.512

This bias can be reduced by combining the results from the ring trained513

CDA and disk trained CDA are combined such that only craters found by514

both CDAs are considered detections. This is shown as the “Ring+Disk”515

result in table 4 and figure 5. The absolute mean difference in diameter516

between the CDA and Robbins and Hynek (2012) dataset decreases from 0.5517

pixels to 0.05 pixels. The trade–off for this improved accuracy is that only518

craters found by both CDAs can be improved, and the recall of the worst519

CDA limits the number of craters that can be improved. In this dataset,520

63% of the existing craters are found by both CDAs and can be improved521

with this method.522
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Figure 6: Error density plots for craters found by each CDA with a matching crater in

the Robbins and Hynek (2012) dataset, given as the absolute fractional error relative to

the crater diameter. (Left) Longitude errors, (center) latitude errors, (right) absolute

diameter errors. Per–image statistics are shown with dashed lines, globally aggregated

data is shown with solid lines The summary median and inter–quartile ranges for this

data is given in table 1.
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In terms of geophysical location and size, the distributions of error in523

the longitude, latitude, and diameter of the matched craters are shown in524

figure 6, with median and inter–quartile values given in table 1 and 2. After525

aggregating the per–image metrics to produce the global dataset, the CDA526

errors decrease as duplicate craters are filtered for higher precision crater527

location determined using the highest resolution image.528

In the global dataset size errors decrease from 6% to 4% (medians) in the529

combined “Ring+Disk” CDA, but the improvement comes at the expense of530

recall. In the globally aggregated data, the recall of the combined dataset is531

worse (at 60%) than the recall of the worst individual CDA (the Disk CDA),532

while the precision is better (at 80%) than the best CDA (the Mars CDA).533

The resulting F1 score drops to 69%, worse than the Mars Ring CDA and534

better than the Mars Disk CDA.535

As a comparison with the errors shown here, Robbins and Hynek (2008)536

performed a similar study using human–derived datasets from MOLA DTMs537

and THEMIS imagery and noted that the DTM derived crater sizes are538

typically 1km larger than the imagery resolved counterparts. In this work539

the DTM derived crater sizes are 0.05km to 0.92km larger than the Robbins540

and Hynek (2012) data (25% to 75% percentiles) with the median crater541

being 0.44km larger. Twenty three percent of the DTM derived craters are542

smaller than their Robbins and Hynek (2012) counterpart.543

4.3. Missed Craters544

None of the CDAs found every crater in the Robbins and Hynek (2012)545

list even if they found more than 57,564 craters in total. The missing craters546

don’t need to share any characteristics but the Robbins and Hynek (2012)547
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dataset includes a large number of parameters that might illustrate why548

some craters were missed. In particular, the Robbins and Hynek (2012)549

dataset contains the depths for each crater, including the depth relative550

to the crater edge (DEPTH RIMFLOOR), relative to the surrounding terrain551

(DEPTH SURFFLOOR), and the degradation/ preservation state (DEGRADATION STATE)552

that rates the condition of the crater from highly–degraded (1) to not–553

degraded (4). A ‘random decision forest’ algorithm (Tin Kam Ho, 1998)554

was used to identify these three parameters as most correlated with missing555

craters in this CDA relative to the Robbins and Hynek (2012).556

Comparing the Mars ring CDA with the Robbins and Hynek (2012)557

dataset (the other CDAs perform similarly), shallow craters are more likely558

to be missed than deep craters, and highly–degraded craters are more likely559

to be missed than non–degraded craters. For example craters with a rim-560

floor depth of 105m or less account for 15% of the dataset, but accounted561

for 36% of the missed craters. Highly degraded craters made up 45% of562

all craters but 75% of the missed craters (all other degradation states have563

a false negative rate of less than 5%). When combined, crater depth is a564

stronger determinant than the degradation state. In all degradation states,565

shallower craters were more likely to be missed than deep craters. In the566

worst case of highly degraded craters, shallower craters are missed at a rate567

10 times higher than the deeper craters.568

Examples of missed and detected craters are shown in figure 7. Some569

of the less degraded craters can be found more easily in the THEMIS IR570

dataset used by Robbins and Hynek (2012) because of the contrasting effect571

of sunlight on the exposed edges of the crater.572
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Figure 7: Randomly selected examples of craters from each degradation state (columns)

and depth (alternating rows) that were missed (top two rows) or matched (bottom two

rows). Each image includes the crater at the center of the image, and a border of 1 crater

width on each side. The shades in each image are indicative of local topography in the

image, but not necessarily the images presented to the CDA.
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Although the impact of the degradation state and crater depth were not573

known during the training step of this experiment, the different crater types574

were well represented in the crater populations used in training and validation575

datasets. If this were not the case, it might have been possible to improve576

the performance of the CNN on the shallow degraded craters by ensuring a577

representative sample of these craters in the training dataset.578

4.4. False Positives579

The CDAs each detected craters that do not exist in the Robbins and580

Hynek (2012) dataset that are considered false positives. A large fraction581

of these detections were likely correctly identified as false positives (i.e., the582

craters do not exist), with a much smaller fraction being real craters missing583

from the Robbins and Hynek (2012) dataset.584

Table 3 gives the number of craters in each CDA and the Robbins and585

Hynek (2012) dataset, grouped by geologic type (Tanaka et al., 2014). The586

table also gives the true positive rate or the fraction of craters in each CDA587

that correspond to a known crater. The remaining craters are the false588

positives. The relatively poor performance of the CDAs in the Apron, Basin,589

and Polar terrain only has a small impact on the overall results — These590

terrains account for less than 1,500 craters in total.591

Examples of false positives in the Mars ring dataset are shown in figure 8,592

grouped by the crater diameter. Some of the false positive detections have the593

appearance of craters while others are not obviously circular features (with594

10,000+ false positives the small sample shown is random and not necessarily595

representative). For the larger detected features, many are paterae that are,596

correctly, not listed in the Robbins and Hynek (2012) crater databse. Fifteen597
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of the 20 largest diameter ‘false positives’ correspond to mountains or paterae,598

and another 20 of the next largest 80 ‘false positive’ detections are named599

features on Mars that are not craters. The CDA is correct in identifying these600

circular features in the DTM, but incorrect in labelling them as craters.601

For smaller sized features the results are less promising. A review of a602

random sample of 300 features below 5km in diameter did not identify any603

definitively new craters — Approximately 30% were depressions related to604

valleys or topography, but are not craters; 5% were detections of craters with605

a diameter of 4km in the CDA but below this threshold in the Robbins and606

Hynek (2012) dataset (and are therefore removed from the dataset) ; 5% of607

the craters are circular features in the DTM data, but disappear in higher608

resolution imagery. Most of the remaining 60% are appropriately labelled as609

false positives and were not crater like even in the available DTM data. Only610

a small number of samples are possibly new craters, resulting in fewer than611

100 new crater detections in the CDA datasets.612

Silburt et al. (2019) attempted to answer a similar question by providing613

a sample of the false positives to researchers to categorize as crater or not.614

In that case 90% were identified as craters, in stark contrast to the num-615

bers here. However, according to Robbins and Hynek (2012) their database616

is statistically complete below the lower limit of 4km considered here. For617

Lunar data, the crater database was less complete and 15% of the new de-618

tections by the (Silburt et al., 2019) CDA were below the lower limit of their619

“ground truth” database. Additionally, the test posed in Silburt et al. (2019)620

is framed differently, asking whether a human researcher would identify the621

feature as a crater, rather than asking whether the feature is actually a crater622
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given all the available information.623
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Figure 8: (top row) false positives in the Mars trained dataset, (bottom) true positives in

the Mars trained dataset. The feature size increases from left to right (with the diameter

range given in the title in kilometres) but the feature is randomly chosen from the CDA

dataset. As in figure 7 the identified crater is centered in the image with a 1 diameter

border around it. (image 5 is Peneus Patera).

5. Conclusions624

In this paper, I have applied a new Crater Detection Algorithm (CDA)625

to find craters in Mars digital terrain model. The CDA combines a multi–626

layer neural network to highlight circular features and a template correlation627

algorithm to determine their location and size. The best CDA used here finds628

75% of the craters listed in a comprehensive existing dataset (Robbins and629

Hynek, 2012), in line with typical human performance on similar datasets630

(Wetzler et al., 2007). I also showed that a CDA trained on lunar data631

(Silburt et al., 2019) performed well on the martian DTMs without further632

training.633
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The performance of each CDA was measured against the Robbins and634

Hynek (2012) crater list, and the predicted locations and sizes of craters com-635

pare well with that dataset. The CDAs find craters over the entire martian636

surface with no significant bias in location, size, or geology, and with differ-637

ences of around 5% of the crater size and location relative to the Robbins and638

Hynek (2012) dataset, in line with estimated errors from human–generated639

crater datasets (Robbins et al., 2014).640

The best CDA developed here misses many existing craters, and misiden-641

tifies other features as craters. The ring trained CDA missed 54% of those642

craters in the most degraded state, and 80% of those craters shallower than643

105m from rim to floor. Given the large number of shallow craters missed, it644

might be possible to improve the performance of the CNN stage by increas-645

ing the ‘contrast’ of the DTM images by limiting the vertical extent in each646

image, similar to the pre–processing technique used in Stepinski et al. (2009)647

to limit the horizontal scale of craters in each image.648

A key feature of any automated CDA is the ability to make predictions649

rapidly and without human intervention. The CDA developed here can work650

with any standard DTM dataset from planet orbiting spacecraft and can gen-651

erate 100–1,000 crater predictions per second on consumer hardware. DTMs652

generated from high resolution imagery can be used to generate catalogs of653

craters not available in current databases (Lee, 2018), and could be incor-654

porated into existing data processing pipelines. Additionally, this work and655

others (Silburt et al., 2019; Lee, 2018) have shown that the CDA can be656

applied across different planets providing consistent datasets are available,657

allowing meaningful comparison between different planetary bodies using a658
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consistent processing algorithm.659
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